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Abstract

Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated
aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as
surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of
Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn
surrounding layer has been tuned between − 2.3 and − 4.5% through the variation of the Sn barrier composition
for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific
QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new
perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.
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Background
Recently, the demonstration of direct bandgap group IV
materials through the alloying of Ge [1, 2] and SiGe [3, 4]
with Tin has motivated intense research activities owing
to the real and practically implementable opportunities to-
wards photonics and electronics efficient on-chip integra-
tion. Indeed, GeSn alloy has been shown to exhibit direct
bandgap beyond certain composition through the faster
decrease of Γ compared to L valley [5–8]. While the
reported results are very encouraging, the material proper-
ties and application potentialities are not yet fully
explored. Indeed, the main actually available path to in-
crease the operating wavelength of GeSn-based semicon-
ductor lasers, towards the atmosphere transparency
window that overlaps with absorbing lines of various gases
[9], includes the increase of Sn content in the GeSn layers
[10, 11]. However, because of the large lattice mismatch
between Ge and Sn (14%), the preservation of the crystal-
lographic quality of the material appears as the main
challenge prohibiting this goal [12, 13]. A potentially inter-
esting solution to increase the emission wavelength and

ensure better carrier confinements relay on lower dimen-
sional structures such as nanowires [14–16], nanorods
[17], and quantum dots [18]. Within the specific direct-
ness criteria, the direct bandgap interband emission wave-
length is theoretically limited to 4.3 μm [19]. To overcome
these limitations, it is necessary to introduce an additional
degree of freedom in the conception of group IV-based
quantum structures. This can be ensured by using ternary
GeSiSn layer [20–22], as a surrounding material for GeSn
quantum dots (QD) offering the possibility of strain engin-
eering by incorporating appropriate Si and Sn composi-
tions. Accordingly, the use of GeSiSn strain engineering
layer around GeSn QD is expected to offer a larger range
of accessible direct bandgap emission wavelength.
In this context, we report on theoretical study of the

effect of strain engineering by varying the Sn compos-
ition in the GeSiSn layer surrounding the GeSn QD on
the direct bandgap interband emission wavelength.

Methods
Since the band offsets between binary and ternary
Sn-containing group-IV alloys and Ge are not experi-
mentally known, the relative band alignment between
the different group-IV semiconductors involved in this
work is evaluated, with respect to the valence band edge
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of Ge, using Jaros’ simplified theory of band offsets [23]
as detailed by D’Costa et al. [24]. The strain effects
arising from the lattice mismatch between Ge substrate
and GeSiSn layer and between the GeSn QD and the
surrounding GeSiSn material have been evaluated for
the conduction and valence band edges.
Indeed, the conduction band edge is shifted by δEi

c and
that of the valence band by δEv as shown in Eq. (1) and (2):

δEi
c ¼ aic εxx þ εyy þ εzz

� � ð1Þ
δEv ¼ av εxx þ εyy þ εzz

� �þ b εxx−εzzð Þ ð2Þ
where i denotes L or Γ valley, ac and av are the conduc-
tion and valence band deformation potential, respect-
ively, and b is the shear deformation potential.
εxx ¼ εyy ¼ ε ¼ ðas−alal

Þ is the in-plan strain and εzz ¼ −2
C12
C11

εxx is the strain in the growth direction. as and al are

respectively the lattice parameter of the substrate and the
strained layer. C11 and C12 are the stiffness constants.
The binary and ternary alloy material parameters are de-

rived from those of Ge, Si, and Sn by linear interpolation.
These parameters are taken from Reference [11].
The composition-dependent strained bandgaps can be

evaluated by adding the corresponding strain-generated
energy shifts to the unstrained material’s bandgap given
in Eq. (3) for GeSn and Eq. (4) for GeSiSn:

Ei
g Ge1−XdSnXdð Þ ¼ 1−Xdð ÞEi

g Geð Þ þ XdE
i
g Snð Þ−biXd 1−Xdð Þ

ð3Þ
Ei
g Ge1−xb−ySiySnxb
� � ¼ 1−xb−yð ÞEi

g Geð Þ þ xbE
i
g Snð Þ

þyEi
g Sið Þ−biGeSnxbð1−xb−yÞ−biSiSny 1−xb−yð Þ−biGeSixby

ð4Þ
where b is the corresponding bandgap bowing parameter
of the binary alloys summarized in Table 1.
To determine the carriers’ confined states and deduce

interband transition energies, the single-band effective
mass Schrödinger equation has been solved in Cartesian
coordinates by finite element method provided by
COMSOL Multiphysics software [25]:

−
ℏ2

2
∇

1

m� r!� �∇ψ r!� �
 !

þ V r!� �
ψ r!� � ¼ Eψ r!� �

ð5Þ

E represents the carrier’s energy, and ψ is the corre-
sponding wave function. m* is the carrier’s effective
mass, ћ is the reduced Planck constant, r! is the
three-dimensional coordinate vector, and V is the
carrier’s confinement potential (band discontinuity). To
simplify the calculation procedure of the QD electronic
structure, we have adopted the constant strain approxi-
mation [26, 27] instead of the computationally expensive
atomic simulation approach that obviously could give
more precision in the strain distribution profile [28, 29].
Indeed, we consider the carriers confining potential in
the compressively strained QD to be sufficiently deep to
minimize the impact of the strain non-uniformity on the
electron confined states [27]. Furthermore, the conduction
band edges, which are the most important parameters in
this work, allowing to study the bandgap directness, are
only shifted by the hydrostatic strain being the less sensi-
tive to the strain non-uniformity especially when a rela-
tively low lattice mismatch is considered [30].

Results and Discussion
Since we are mainly concerned by the impact of the
strain around the GeSn QD, the Sn composition of the
QD is fixed at 28% and the Si composition of the GeSiSn
at 35%; the study is therefore focused on the impact of
the Sn barrier composition (xb) variation between 6 and
22%. The resulting in-plan strain either in the GeSiSn
layer or in the GeSn QD is given in Fig. 1a.
The in-plan strain in the two-dimensional layer of

GeSiSn material varies between 0.6% (xb = 6%) and −
1.7% (xb = 22%). We suppose that this layer remains
pseudomeorphically strained allowing to keep the de-
signed structure experimentally realizable. The GeSn is
chosen to be compressively strained within the GeSiSn
surrounding material with a lattice mismatch ranging
from − 2.3 to − 4.5% ensuring favorable conditions to
the formation of self-organized GeSn QD.
Figure 1b shows the dependence of the strained band-

gap at L and Γ points from Ge0.72Sn0.28 and Ge(0.65-xb)-
Si

0.35
Snxb as a function of xb. The Γ valley of Ge0.72Sn0.28

material remains below the L valleys, testifying its type I
for the whole investigated range of tin barrier compos-
ition. Meanwhile, when the electron confinement is
taken into account, the effective bandgap increases and
the QD size effect becomes decisive [18] especially for
highly strained QD. Indeed, in the presence of quantum
confinement, the ground state energy should be consid-
ered instead of the minimum of the Γ band. Accordingly,
smaller size QD are expected to have higher confined
energy levels in the Γ valley that may exceed the L valley
(and/or ground state electron energy level in the L val-
ley). So, it is important to investigate the QD size’s range
obeying the specific directness criteria.

Table 1 Binary alloy’s bandgap bowing parameters in eV

bGeSn bGeSi bSiSn

Γ (eV) 2.92 [31] 0.21 [32] 13.2 [33]

L (eV) 0.87 [31] 0.335 [32] 2.124 [32]
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The modeled structure is schematically presented in
Fig. 2. The Ge0.72Sn0.28 QD is considered to have a dome
shape with a circular base of diameter D ranging from
15 to 40 nm and fixed height to diameter ratio equal to
0.25. The QD is positioned inside 15-nm-thick GeSiSn
layer having a Si composition of 35% and a tunable Sn
composition. This structure is supposed to be formed on
Ge-buffered substrate and capped with Ge layer.
To ensure consistent QD design for better light-emitting

device operation, a suitable directness parameter taking into
the energy spacing between the lowest QD confined energy
level position in L and G valleys has been introduced [18].
This parameter is denoted by GSL-GSΓ and should be higher
than the room temperature thermal energy to avoid carriers’
loss by thermal activation, where GSL(GSΓ) represents the
electron ground state energy level in the L valley (Γ valley)
with respect the valence band maximum. The evaluation of
GSL-GSΓ is schematically illustrated in the inset of Fig. 3.

The calculation of the GeSn QD electron energy levels
in Γ and L valleys for different diameters as a function of
the Sn composition in GeSiSn allows to obtain the cor-
responding directness parameter (GSL-GSΓ). The results
are plotted in Fig. 3. For a given xb, the value of GSL-GSΓ
is mainly governed by the QD size. Accordingly, the
smaller dots having obviously higher confined energy
states require lower bandgap energy through strain redu-
cing to fulfill the directness criteria. As shown by Fig. 3,
bigger dots (D > 25 nm) satisfy GSL-GSΓ > 26 meV for xb
higher than 8%. However, efficient direct bandgap from
small-size QD is found to be ensured for higher values
of xb (xb ≥ 14% for D = 15 nm).
Within the adopted parameters in this work, and

especially the binary materials’ bowing parameters, the
Fig. 1 a Lattice mismatch between Ge0.65-xbSi0.35Snxb and Ge (filled
circles) and between Ge0.72Sn0.28 and Ge0.65-xbSi0.35Snxb (filled
squares) as a function of xb. b Band edges at L and G valleys for
Ge0.65-xbSi0.35Snxb, Ge0.72Sn0.28, and Ge as a function of xb

Fig. 2 Schematic presentation of the modeled GeSn QD of height
(h) and diameter (D) within GeSiSn strain-reducing layer in Ge matrix

Fig. 3 Directness parameter (GSL-GSΓ) variation as a function of the
Ge0.72Sn0.28 QD size and Sn composition of the Ge0.65-xSi0.35Snx
surrounding layer. The dotted line indicates the thermal energy at
room temperature. The inset represents a schematic definition of
the directness parameter
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increase of the Sn content of the GeSiSn material re-
duces the stain around the QD and reduces also the sur-
rounding material bandgap. Indeed, as shown in Fig. 1b,
the increase of xb from 6 to 22% reduces the conduction
band discontinuity at Γ valley from 0.72 eV down to
0.23 eV. Indeed, as shown in Fig. 4, where the squared

wave function jψð r!Þj2 of the ground state electron in
quantum dots of diameter 35 nm is shown in the xy plan
for Sn barrier composition of 6% and 22%, the electrons
are found to be fully localized inside the QD regardless
of the barrier composition (conduction band’s discon-
tinuity). The strongly confined electrons indicate higher
reliability of the investigated QD as an active medium
for light emitters on Si substrate.
By limiting the QD sizes for a given xb to those engen-

dering efficient direct bandgap emission, we have appraised
the QD ground state interband emission wavelength. The
results are shown the Fig. 5, where the emission wave-
length is plotted against xb for different QD sizes. It is
worth noting that the biggest QD size considered in this
work (D = 40 nm) has shown small energy separation be-
tween the electron ground state and first excited state
(below 26 meV) and has therefore been ignored from this
study. Nonetheless, the evaluated emission wavelength as a
function of xb has been kept in Fig. 5 with a dotted line.
The wavelength range projected to be covered by the

proposed QD design ranges from 3 up to 7 μm. The
yielded range is extremely important for gas sensing
application. The experimental implementation of this
structure could offer the opportunity to cover, for the

first time, the whole mid-IR range with a fully compat-
ible material with existing microelectronic technology
paving the way to new perspectives in CMOS compat-
ible QD based mid-IR optoelectronics.

Conclusions
GeSn QD in GeSiSn strain engineering layer on Ge matrix
have been investigated as a function of QD size and the
lattice mismatch with surrounding material. Reducing the
strain around the GeSn QD by varying the Sn composition
of GeSiSn barrier material is found to enhance the direct
bandgap type I emission wavelength from 3 up to 7 μm.
The designed structure opens new perspectives in mid-IR
light emitter fully compatible with Si technology.

Abbreviations
CMOS: Complementary metal-oxide-semiconductor; GSL: Ground state
electron level in L valley; GSΓ: Ground state electron level in Γ valley;
QD: Quantum dots
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